Post più popolari

mercoledì 17 novembre 2010

La macchina che cerca l'origine dell'universo



In preparazione al CERN di Ginevra l’LHC, la macchina più complessa mai costruita dall’uomo. Vi hanno lavorato per 10 anni circa 5 mila scienziati e tecnici provenienti da una cinquantina di Paesi. L’italiano Michelangelo Mangano, fisico teorico al CERN, ci spiega perché è stato concepito questo grande progetto e come potrebbe rivoluzionare le nostre conoscenze sui principi fondamentali dell’universo.


Due tecnici alle prese con uno dei 4 strumenti dell'Lhc, il rivelatore ALICE. Al suo interno verranno fatti collidere atomi di piombo. Nel corso di questo esperimento, per pochi secondi, si formerà una palla di fuoco che ricreerà la condizione dell'universo a pochi istanti dal Big Bang.
di Andrea Parlangeli
L’LHC (Large Hadron Collider, cioè “Grande Collisore di Adroni”) è un gigantesco anello, lungo 27 km, sepolto a circa 100 metri di profondità. Al suo interno, a partire dal prossimo maggio cominceranno a muoversi fasci di protoni a velocità prossime alla velocità della luce (300 mila km al secondo), al fine di studiare le proprietà fondamentali della materia.

Ma perché costruire strumenti così complessi e costosi?L’obiettivo fondamentale è studiare i mattoni fondamentali della materia e i principi di base su cui si basa l’intero universo. Per ottenere questo risultato, si faranno scontrare fra loro fasci di particelle subatomiche, i protoni, che si muovono in direzioni opposte.







Nell’ LHC, quando funzionerà a regime, ci saranno 300 mila miliardi di protoni per ognuno dei sensi di marcia, suddivisi in 2.808 pacchetti a distanza di 7,5 metri l’uno dall’altro. I fasci si incroceranno in 4 punti, dove sono posizionati i rivelatori dei 4 esperimenti (ATLAS, CMS, Alice e LHCb): qui avverranno gli urti tra protone e protone che vogliamo studiare.

Che cos’ha l’LHC di diverso dagli altri acceleratori di particelle, come il Tevatron al Fermilab di Chicago o il vecchio LEP, sempre al CERN?
Le differenze principali sono due: l’energia dei protoni (e quindi degli urti) e la luminosità, cioè la quantità di urti per unità di tempo.
Il fattore più importante è l’energia. Rispetto al più potente acceleratore di particelle oggi in funzione, il Tevatron al Fermilab di Chicago, l’LHC potrà accelerare i protoni a un’energia 7 volte superiore: “14 Tev” (teraelettronvolt). Indicativamente, è l’energia di una zanzara che vola. Può sembrare poco. Ma questa energia sarà compressa in un volume immensamente più piccolo (10-37) di una zanzara. Questa concentrazione di energia rende possibile un fenomeno previsto dalla teoria della relatività di Einstein, la trasformazione di energia in materia. Dall’urto di 2 protoni energetici, nascono così apparentemente dal nulla centinaia di altre particelle, dando vita a quello che in fisica si chiama un “evento”. Il nostro scopo è quello di individuare, tra i tantissimi (circa 1 miliardo) eventi che avvengono ogni secondo, i più interessanti. Quelli, cioè, in cui si creano particelle nuove o si verificano fenomeni che vanno al di là della teoria attualmente condivisa (il Modello Standard).
Dopo 10 anni di lavoro, al quale hanno partecipato almeno 5000 scienziati e operai provenienti da tutto il mondo (foto), a maggio 2008 entrerà in funzione l'Lhc. Sarà il più grande e complesso strumento scientifico mai costruito. I suoi rivelatori funzioneranno a 271,25 °C sotto zero.



 




All’aumentare dell’energia, oltretutto, è possibile studiare fenomeni che avvengono su scala più piccola: è come aumentare la potenza di ingrandimento di un microscopio.
I fenomeni più interessanti che cerchiamo, però, sono anche molto rari. E per questo è anche importante la luminosità dello strumento, cioè il numero di collisioni che avranno luogo ogni secondo. La luminosità dell’LHC è un centinaio di volte maggiore di quella del Tevatron.

Nessun commento:

Posta un commento